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c = 9.493 (3) A;0 = 100.50 (2)°; p0 = 1.79 (2), pc = 1.802 g 
c m - 3 with Z = 4. A total of 6546 independent nonzero re­
flections were measured on a Philips PWl 100 diffractometer 
and 4874 reflections with / > 3<r(/) were used in subsequent 
structure solution and least-squares refinement. Final block-
diagonal matrix least-squares refinements with anisotropic 
thermal parameters for all nonhydrogen atoms converged to 
^ F = 0.062 and /? w F = 0.091. 

The structure of 1 consists of discrete complex cations 
[Cu H 2c(L)] 4 + (Figure 2), perchlorate anions, and water 
molecules. 

The two copper(II) ions are located inside^ the molecular 
cavity of the macrotricyclic ligand (L). Each cation is bound 
to two nitrogens, two sulfurs, and one oxygen atom. The data 
(distances, angles, and dihedral angles) show that the complex 
cation has a virtual center of symmetry, a feature which implies 
an identical role for the two copper(II) cations. Their coor­
dination polyhedron is a somewhat distorted tetragonal pyr­
amid in which the metal ion lies ~0.34 A out of the basal N 2S 2 

plane9 '10 toward the axial oxygen atom. The four Cu-N and 
four Cu-S bond distances range from 2.020 (5) to 2.058 (5) 
and 2.306 (1) to 2.332 (1) A, respectively. The values of the 
Cu(l ) -0(4) and Cu(2)-0(16) bond lengths are 2.291 (5) and 
2.283 (4) A. The Cu( l ) -Cu(2 ) separation of 5.621 (1) and 
the 0 ( 4 ) - 0 ( 1 6 ) distance of 4.211 (6) A indicate that (i) there 
is little if any direct interaction between the two copper centers, 
as shown also by the EPR spectral data4 ( g x

 = 2.045 g,; = 
2.132 and A \ = 8 mK); (ii) there is a large cavity between the 
two copper cations which should allow insertion of a diatomic 
substrate. There is no evidence that such a process occurs; 
however, when adding KO2 to [Cu n 2C(L)] 4 + or dioxygen to 
[ C u ^ c ( L ) P + , similar electronic spectra are obtained.4 Among 
the possible binding modes of 0 2 " - ( « = 1, 2) to two metal 
centers" (,u-dioxygen bridging), the transplanar C2h and 
nonplanar C2 modes fit particularly well for the complex cation 
present in 1 since these modes necessarily impose a C u - C u 
distance varying between 4.0 and 5.2 A owing to the Cu-O-O 
and dihedral Cu-O-O-Cu angles. In [Cu H

2 c(L)] 4 + the N 2S 2 

planes are almost parallel, the angle between their normals 
being 1.34°; this feature should lead to a value near 180° for 
the Cu-O-O-Cu torsion angle. The planar cis C21, bonding 
mode of O2 as proposed for hemocyanin1 l a probably necessi­
tates the synthesis of a dissymetric ligand with Ri ^ R2 

(Figure lb). 
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Highly Reduced Organometallics. 3.1 

Tetrasodium Tetracarbonylmetalates(4-) of 
Chromium, Molybdenum, and Tungsten, Na4M(CO)4 

Sir: 

Highly reduced organometallics which have properties 
consistent with those expected for noncluster binary carbonyl 
trianions, i.e., V(CO)5

3-,2 M(CO) 4
3 - (M = Mn and Re),3 and 

M' (CO) 3
3 - (M' = Co, Rh, and Ir),1 have been recently pre­

pared by reduction of carbonylmetalate monoanions, 
M(CO)* 1 - , in liquid ammonia and/or hexamethylphos-
phoramide (HMPA). We now report on the syntheses and 
properties of more highly reduced species, tetrasodium tetra-
carbonylmetalates(4—) of chromium, molybdenum, and 
tungsten. These are the first examples of noncluster binary 
metal carbonyl tetraanions4 and the only compounds presently 
containing molybdenum and tungsten in a formal —4 oxidation 
state.5 A new synthetic approach, which may be of general 
importance as a route to other families of "superreduced" 
organometallics, has been used in this synthesis of 
Na4M(CO)4 : the reduction of substituted organometallics. 

Reduction of a noncluster metal complex containing both 
good and poor ir-acceptor ligands often causes preferential loss 
of weaker or non-x acceptors.6 Trivial examples where this 
generalization holds include the reduction of metal carbonyl 
halides.7 More interesting and less well-understood examples 
involve reduction of phosphine or cyclopentadienyl substituted 
metal carbonyls.8 We find that reduction of diamine substi­
tuted group 6 carbonyls, i.e., (TMEDA)M(CO)4 ,9 by sodium 
in liquid ammonia10 provides essentially quantitative yields 
of analytically pure Na 4M(CO) 4 ( 1 ) " according to the 
equation 

(TMEDA)M(CO)4 + 4Na — Na 4M(CO) 4 -I- TMEDA 

The presence of the readily displaceable TMEDA ligand, 
which is not attacked by sodium in liquid ammonia, and the 
preformed M(CO)4 unit appear to be of crucial importance 
in this synthesis.12-13 

Infrared spectra of 1 (Figure 1) show bands at exceedingly 
low energies for terminal carbonyl groups. These values are 
almost 200 cm - 1 lower than those reported for Na 3M'(CO) 4 

(M' = Mn and Re)3 which suggests that these insoluble "te­
traanions" are most reasonably formulated as [M(CONa)4]* 
where extensive and strong sodium ion-carbonyl oxygen in­
teractions may be responsible for the very low ;<(CO) 
values.14'15 Differences in the spectra of Na 4W(CO) 4 and 
other Na 4M(CO) 4 shown in Figure 1 are not understood; 
however, they do not appear to be due to carbonyl containing 
impurities which form on partial oxidation OfNa4M(CO)4 . 
Other preparations OfNa4Mo(CO)4 have provided infrared 
spectra nearly identical with those of Na4W(CO)4 . 

Treatment of slurries of 1 in tetrahydrofuran (THF) with 
2 equiv of Ph3SnCl results in an immediate reaction and for­
mation of new anions which, on the basis of infrared data, 
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Table I. Infrared and 1H NMR Data for [Et4N]2I(Ph3Sn)2-
M(CO)4] (2) and [Et4N]I(Ph3Sn)3M(CO)4] (3) 

1471 

'1 = r:o 

, I 

/ 

I 
I 

1529,1178 

M • rf 

Anion (M) 

2a (Cr) 

2b (Mo) 

2c (W) 

3a (Cr) 

3b (Mo) 

3c (W) 

KC=O)1Cm-' o 

1918 (m), 1822 (vs), 
1782 (s) 

1948 (m), 1844 (vs), 
1791 (s) 

1947 (m), 1838 (vs), 
1790 (s) 

1956 (m), 1904 (s), 
1864 (vs) 

1999 (m), 1897 (vs), 
1832(w) 

1997 (m), 1894 (vs), 
1828 (w) 

NMR, bb-< 

6.91-7.05 (m, 9 H), meta 
and para 

7.43-7.54 (m, 6 H), ortho 
6.89-7.05 (m, 9 H), meta 

and para 
7.42-7.58 (m, 6 H), ortho 
6.90-7.07 (m, 9 H), meta 

and para 
7.38-7.56 (m, 6 H), ortho 
6.96-7.66 (m, 45 H)d 

7.02-7.67 (m, 45 H)d 

7.02-7.68 (m, 45 H)rf 

Figure 1. Silicone fluid mull spectra of Na4M(CO)4 (approximate positions 
of bands in cm-1). 

1H NMR spectra (see Table I), and elemental analyses, are 
formulated as CiS-(Ph3Sn)2M(CO)4

2-. These may be isolated 
as moderately air-sensitive and white crystalline [Et4N]2-
[(Ph3Sn)2M(CO)4] (2).16 From the tungsten reaction a 
17-20% yield of pale yellow, air-stable, and crystalline 
[Et4N] [(Ph3Sn)3W(CO)4] (3c), containing a seven-coordinate 
tungsten, is also obtained.17 Conversion of 2 to 3 for Cr, Mo, 
and W is easily effected by treatment of 2 with 1 equiv of 
Ph3SnCl in THF.1 8 This reaction sequence is depicted by the 
following scheme: 

Ph3SnCl 
Na 4M(CO) 4 —>• Na2I(Ph3Sn)2M(CO)4] 

Et4NBr 

—*• [Et4N]2C(Ph3Sn)2M(CO)4] 

[Et4N]2I(Ph3Sn)2M(CO)4] + Ph3SnCl 
CH3CN 
^ = i [Et4N][(Ph3Sn)3M(CO)4] + E t 4 N + C l -

The pale yellow and crystalline chromium derivative (3a) 
is particularly unusual since it appears to be the first example 
of a thermally stable seven-coordinate chromium carbonyl 
species containing only monodentate ligands.19 Owing to the 
unusual nature of 3a, we have examined its chemistry in some 
detail and find that one triphenyltin group is easily lost under 
a variety of conditions, e.g., by reduction with triphenylstannyl 
lithium or heterolytic cleavage with hexamethylphosphora-
mide 2o i.e., eq 

(Ph3Sn)2Cr(CO)4
2- + Ph6Sn. 

'Ph1Sn)Cr(CO)4 

Ph1SnLi(THF) 

HMPA 
(Il 

Ph1Sn(HMPA)n
+ + (Ph1Sn)Xr(CO)4-" 

lnitial studies on the chemical reactivity patterns of 
Na4M(CO)4 show that these "superreduced" species are useful 
precursors to a variety of new organometallic compounds. 
Studies to further characterize the reactivity patterns of these 
new materials, especially in regard to their reactions with or­
ganic substrates, are in progress and will be reported in due 
course. 
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MNDO Parameters for Third Period Elements 

Sir: 

The MINDO/3 method1 suffers from well-known prob­
lems1 and, in the case of compounds containing heteroatoms 
and its use for third period elements (Si. P, S, Cl), is further 
restricted by the availability of parameters for them only for 
limited combinations of them with other elements2'3 and 
without inclusion of 3d AOs. Furthermore, recent work4 has 

Opti­
mized 

t/ss, eV 
l/pp, eV 
fs, au 
fP, au 
ft, /3P, 

a, A"1 

Si 

-40.568292 -
-28.089187 -

1.435306 
1.435306 

-4.256218 

2.1961078 

P 

•56.143360 • 
-42.851080 • 

2.108720 
1.785810 

-6.791600 • 

2.4152800 

S 

-75.239152 -
-57.832013 

2.613591 
2.034393 

-11.142231 

2.4916445 

Cl 

-100.227166 
-77.378667 

3.784645 
2.036263 

-14.262320 

2.542201 

Table II. MNDO Parameters for Third Row Elements 

Derived 

HA 
kcal 
mol - 1 

F A 
^ e I , eV 
z>i, A 
D1, A 
Po, A 
pi, A 
P2, A 

Si 

108.39 

-90.53496 -

0.744999 
0.616918 
0.733128 
0.768732 
0.664346 

P 

75.57 

-152.95996 

0.536030 
0.495834 
0.622778 
0.541911 
0.531356 

S 

66.40 

-235.45636 

0.435589 
0.435248 
0.558953 
0.449254 
0.468321 

Cl 

28.99 

-353.137667 

0.263889 
0.434848 
0.478996 
0.328218 
0.435983 

uncovered a discrepancy between the published2 results for 
compounds of phosphorus and those calculated using the 
published1 parameters which are also included in our 
MINDO/3 computer program, and similar, though smaller 
discrepancies have now been found for silicon and sulfur.5 

Apparently an earlier set of parameters was inadvertently in­
serted in our final computer program and hence in the pub­
lished list.1 The results for chlorine3 are, however, correct.5 

In the meantime we have parameterized the MNDO 
method6 for these elements (Si, P, S, Cl) and the results are, 
as expected, better than the published2 MINDO/3 ones. 
MNDO has the further advantage of using only atomic pa­
rameters; so calculations can be carried out for any combina­
tions of these elements with those already parameterized (H,7 

Be8, B,9 C,7 N,7 O,7 F10). As yet, 3d AOs have not been in­
cluded in MNDO; so the parameters refer only to compounds 
of these elements in their characteristic valence states (SiIV, 
P111, Sn , Cl1). The calculated heats of formation for compounds 
of, e.g., P v and SVI are too positive by very large amounts. 

This work will be repeated in full in due course but unex­
pected circumstances have delayed its publication. In view of 
the unexpected problems with MINDO/3 and the very wide 
demand for some procedure applicable in particular to com­
pounds of P, we are therefore reporting the parameters for Si, 
P, S, and Cl here (Tables I and II). Computer programs for 
MNDO are available from Q.C.P.E., both ours and one written 
in a more general version of FORTRAN by Dr. W. Thiel. 
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